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Dissipative Formation of Hole-Like Excitation in 
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A viscous plasma is analyzed by reductive perturbation theory to model dissip- 
ative soliton formation. A nonlinear Schr6dinger equation with complex 
coefficients is derived. Such an equation can be exactly solved by the technique 
due to Hirota. Three types of solution can be obtained under different physical 
conditions: solitary waves, ion-acoustic holes, and shocks. Even in the presence 
of a dissipative effect like viscosity, it is possible to obtain a solitary-wave-like 
excitation. 

1. INTRODUCTION 

Plasma physics is one of  the most important domains for studying the 
formation and interaction of nonlinear waves (Shukla et al., 1986). Of late, 
various situations have been studied and in some cases their relativistic 
generalizations have also been analyzed. Initial observations of  ion-acoustic 
waves in experiments were made by Ikezi (1978), A detailed review of the 
present experimental status can be found in the excellent review of Longren 
(1983). The first derivation of  the KdV equation in a plasma was done by 
Washimi and Taniuti (1966). Later some authors also performed higher- 
order calculations (Lai, 1979). Various modelings of physical situations have 
been done by incorporating the effects of two-temperature electrons (Tagare 
and Reddy, 1986), ion temperature (Nejoh, 1987), relativistic effects (Roy 
Chowdhury et al. 1988a; Das and Paul, 1985), and collisions (Kahawara, 
1970) and Landau damping (Ott and Sudan, 1969; Roy Chowdhury et al. 
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1986b). Others have also studied nonlinear wave formation in a magnetized 
plasma (Mio et al., 1976). On the other hand, a variant of the original 
method developed by Washimi and Taniuti has been devised to consider 
envelope solitons, by considering a Fourier-like expansion of the disturbance 
(Ichikawa et al., 1970). This type of methodology usually leads to a nonlinear 
Schr6dinger (NLS) equation in place of the KdV equation. 

If one critically reviews the different situations studied, it is apparent 
that there has not been extensive discussion of the effect of viscosity in a 
plasma medium. This may be due to the complex structure of the theoretical 
formulation. In a plasma, ions are chiefly responsible for the transport of 
momentum, and electrons for that of energy. Therefore, ions cause viscous 
effects and electrons cause thermal conduction. Thus, even in the absence of 
any static magnetic field, two natural units of length occur, one for the 
dissipation of Joule heat and the other for the viscous forces. These two 
lengths are not of the same order. 

Under these circumstances we thought it to be worthwhile to investigate 
the influence of dissipation in particular situations in plasmas with the help 
of the flexible machinery of reductive perturbation theory. We use this theory 
to treat the viscous effect as a prototype of a dissipative force. We have 
deduced a new type of NLS equation with an extra linear term and complex 
coefficients. Such an equation is not known to be solvable through the 
inverse scattering Ablowitz (1978) method. However, it is interesting that 
one can adopt the methodology of Hirota (1981) to deduce multisoliton- 
like configurations for such an equation. Such an equation was previously 
studied from a purely mathematical point of view by Nozaki and Bekki 
(1984). Three distinct classes of waves may exist. One is the usual solitary 
type, another is a ion-acoustic hole, and the third is a shocklike object. 
Actually, dissipative effects such as viscosity are significant in magnetized 
plasma. But we have used it to simulate a dissipative force in a nonmagnet- 
ized system because the same type of NLS can be obtained in the magnetized 
situation, but with more labor. 

2. FORMULATION 

We consider a collisionless plasma consisting of isothermal electrons 
and cold ions. The effect of viscosity in the momentum transfer equation is 
also taken into account. To proceed further, we consider a fluid model for 
the plasma incorporating the effect of viscosity. The role of viscosity in 
plasmas has been discussed by Jackson (1975) and Chakraborty (1978). 
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These equations are written as 

OV v OV= O 2 - - +  _Or +Q V 

Ot Ox Ox Ox 2 

On O 
(I) 

02r 
O X  2 - -  n e  - -  H i  

with 

where 1/is the coefficient of bulk viscosity and ( is the coefficient of shear 
viscosity. The quantities r/an ( are also known in the literature as the first 
and second coefficients of viscosity. Furthermore, if the ions are cold and 
the electrons are sufficiently warm, the thermal speed of the electrons will 
be much greater than the wave speed of the ion-acoustic wave. Hence, the 
effect of resonance particles may be small and the variation of the electron 
distribution function will be very small. Therefore, the effect of Landau 
damping due to electrons may be neglected. Hence we have assumed a fluid 
description of the plasma (Kakutani et al., 1969) 

We have taken the following physical situation: 

V ~ 0 ,  n ~ l ,  r  as x ~ o o  

Stretched variables ~ and ~ are defined via 

= e ( x -  At) v = E:2t (2) 

Physical variables are expanded in a power series of the form 

U = U ~  ~ e ~ ~ U~)(~ ,v)exp{ i l (kx-cot )}  (3) 
a = l  I=--oo 

(') U= v (4) 

r 

Substituting these in the original set (1) and transforming to (~, r), we 
obtain a set of equations for U~ ~) by equating various powers of e. Assuming 
the l=0  component of the first-order density perturbation n~0 I) is equal to 
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zero, we obtain 

U~I)=0 for l:/:1 

Furthermore, we have 

vl, ) =co _(,) 
k nl 

~ , ) =  1 n l , )  
1 - k  2 

(5) 

The compatibility condition is given as 

(co + iQk 2) o9 - k 
k 1 - k  2 

(6) 

The group velocity is 

do9.  [2k/( 1 + k2) 2] - 2iQogk 

dk 2o) + iQk 2 
(7) 

On the other hand, in second order of e, we obtain 

V(22 ) _  ogk(1 +4k 2) - o) (~) co 
2------T-77.,2 Lnl n l  - - -  (n~t)) 2 

k[k -o9(1 +4k )0-] k 
(8) 

where 

1 k 1o9 2 co 
L = -  o- 

2 ( l + 4 k ) ( l + k 2 )  2 2 k k 

cr = co + 2iQk 2 
(9) 

k .,~(2) = r . ( O _ O ) _  AArr~O)~2 
'/'2 L , n l  n l  iv.( I.r ) 

k 2 -- co(1 + 4k2)ry 

1 1 
m = -  

2 (1 +k2)2(1 +4k 2) 

(lO) 

n(22)_ k ( l + 4 k  z) ~1 k 

k 2 -  r +4k2)(r /2  (1 +4k2)(1 + k  z) 

2 k k u j , , j  .,i 

(11) 
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while the equations for n~ 2), V~ 2) , and ~b~ 2) are 

v~2)=W_n(2)+i(w ~) one') 
k ' -~ -  a~ 

2ik 3n~ I) (12) 
_ _ _  + 1 . n ~ 2 )  

~b(2) ( l+k2)  2 3~ ( l + k  ~) 

This time the compatibility yields 

2 -  2k/ (1  + k2) 2 - 2iQcok (13) 

(2c0 + iQk 2) 

which is exactly the value given in equation (7). We now move to the set 
n(0 2) , v(o 2) , and ~bo (2~ , for which we obtain 

n~o2)= 1 I 1 r176 k 2 1 ' - ( ' ) ~ ( ' ) - C )  (14) 
1 - 2  2 2(1q-k2) 2 2k 2 t"l ,,-t 

1_22 2(1+k2)2 2k 2- X (n?)n~-C) 

1 
( n ~ ' ~ n ~ - C )  (15) 

2(1 + k2) 2 

V(2)____I__{ 1 [ I 0) 2 C02] 
o Z ~ 2(k+k2) 2 2k 2 k 

+,} + - - -  (n( ')n~ - C) (16) 
4k 4 2(k k2) 2 

The constant C is the boundary value of In~)12 at ~ = -  m. 
We now equate the coefficients o f  s 3, leading to the following set of 

equations: 

Or? ) 

Or 
- - - , c o v ~  3) - 2 OV~2l+ ikv(o2)V~ ') + 2ikv~22)v~ 

~2V~1) . ~V~ 2) 
- ~ q ~ ( 2 ) - i k ( 9 ~ 3 ) + Q - ~ + 2 i k Q ~ - Q k 2 v ~  3) (17) 

~n (2) 63n 0)  
-icon~ 3) + ikv~ 3) - Z v,q + ~,,~ + ikn~oZ)v~n 

O~ O~ 

.~_ 01)~2) .4- 2ikn~2)v~ • a., (2).(1) • " ; I . .  (2)_(I) - -  ~ , , ~ , o  - l  T , - , ~ o 2  , , - ,  = 0 ( 1 8 )  



1340 Roy Chowdhury and Pakira 

O2~bl0) 4- 2ik ~9 dp(lz) _ k2d?(13) ,942 ~ 

=0t3,  + l 
2 L "- '_1 "" (19) 

Therefore, elimination of other field variables in favor of n~ I) leads to the 
equation 

02n~l) --I- ~'ln~ i On~l)O,~ + ~ - ~ -  It I I I = vn~ i) (20) 

where the coefficients (6, r/', v) are functions of physical quantities 
(co, Q, k, ,%). Equation (20) is a nonlinear Schr6dinger-type equation with 
an inhomogeneous linear term on the right-hand side and complex 
coefficients. After some complicated analysis, equation (20) leads to the 
following result: 

�9 0n~ I) 02n (1) 
t -Or + (pr+ ipi) -~2  + (q,+ iqi)ln~l)12n~l) 

= i(A c~ + stC,)n~') + (A C, - siC~)n~' ~ (21) 

where the coefficients are complicated and lengthy functions of plasma 
parameters. We omit those expressions. 

3. SOLUTION OF THE NONLINEAR SYSTEM 

It is highly interesting to note that Nozaki and Bekki (1984) discussed a 
complex version of the generalized Ginzburg-Landau equation for obtaining 
exact solutions. Their motivation was a purely mathematical one, using the 
celebrated technique of Hirota (1981). We have written our equation (20) 
to conform with their notation. For the sake of completeness we briefly 
describe the basic methodology of the Hirota approach. In this approach 
the nonlinear field is sought as the ratio of two functions G/F and the usual 
differentiation is transformed to a "bilinear operator" Dx or D, via the 
formal identity 

[ 0 0 ~ x' t) x=x,,,= . x ( : .  , , ' )  . 

t '  

= f ~ g - f g x  (22) 
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and various variations. In the particular case under consideration we set 

n~l)=ei(Xe_n, ) G( ~, r) (23) 
V 1 + i,~( ~, r) 

with K, f~, and A real constants. Then equation (20) can be rewritten as 

F (f2 - p K  2-  A + iDa., + 2ikpD,x,r +p" O~,e)(G. F) 
qG 

= ( #  D2a,~+iv-Atx(F.  / (24) 

A, A are to be determined. Here a modified bilinear operator Da,x is defined 
through 

DA.r F ) = I ~ - ( I  + i A ) + ] G ( ~ ) F ( ~ '  ) at ~ = , '  

/~ _ (1 + iA)(2 + iA) (25) 
2 

Usually equation (25) breaks up into two equations, one for F .  F and the 
other for F-  G. One then seeks solutions of those in series form, 

F= l + sf, + s2f2 + . . .  
(26) 

G = gj + sg2 + s3 g3 + �9 " �9 

where s is a small parameter, and can be set equal to one after the calcula- 
tion. One can keep terms in the series (26) up to any power of e keeping 
consistency with (26). It has been observed that if G =g~ and F =  1 +J],  then 
we obtain a solution similar to the single soliton of the usual NLS equation, 
whence G=g~ +g2; F =  1 +f l  +f2 yields two soliton-like structures, and so 
on. However, because of the complex nature of the constants, these solutions 
are no longer pure solitons; their nature is completely different. In the follow- 
ing we discuss the various cases that may occur. 

In our case, however, the coefficients are complex, and we must apply 
the Hirota approach directly as described above to find the solution. 

Case a. Following Nozaki and Bekki (1984), we observe that if 

A= - Z  :1:(2 +Z2) 1/2 

qiAr = q,(Ai-  v) 

Z = 1.5(prq, +piqi)(prqi-Plq,) 
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a n d  i f  we c h o o s e  A i = v  a n d  K = f ~ = 0 ,  we o b t a i n  a s o l i t a r y - w a v e - l i k e  
s o l u t i o n :  

n~O - g e r  
(1 + e r +r*) l  +iA, (27) 

(k,)  2 = ( R e  k)  2 = 

F = k ~ - c o r  

3 v A  

2qi - p i A  (1 + A 2) 

k i = k ~ A  

Ig[ 2 = ( 4 k g ) / A  

I m  co = kr2[2p;A - p r ( l  - A2)] 

R e  c 0 = 0  

A = (prqr +piq~)/[lPl2(2 -- A2)] 

o r  a h o l e - t y p e  so lu t ion .  

Case b. W h e n  K, f ~ r  we can  have  a s o l u t i o n  

1 - e 2 k ~  n~ I) = gei(k~ -~r )  
(1 + e2kr (1 +iA) 

w h e n c e  

k 2 = - A v / ( q i + p i A 2 A )  

Igl 2 = - k 2 / A  = ( v + p i k 2 ) / q i  

K = A k ;  ~ = p , . k 2 - g , . l g l  2 

o r  a s h o c k - t y p e  so lu t ion .  

Case c. W e  can  have  a s o l u t i o n  

ei(K~ -~r )  e-k( ~ - st) 

n l O = g  1 + e  -k~-sO~l+iA)  

k 2 = -- A v[q i+ A ( A p i -  1.5pr)2/pi] 

K =  1 . 5 k p / &  

S = - 3pi /p2k  

Igl 2 = k 2 / A  = [v + p i ( K +  Ak2)] /q i  

f2 = p r ( K +  Ak)  2 - q r [ g [  2 - -  S A k  

(28) 

(29)  
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4. DISCUSSION 

We have shown that nonlinear waves in a plasma having a viscous 
nature can be described by a new type of nonlinear Schr6dinger equation. 
This NLS equation is exactly solved by using the Hirota technique. Three 
types of solutions can be obtained: (1) solitary-wave-like, (27); (2) hole 
type, (28); and (3) shock type, (29). The existence of each solution depends 
on the values of K, A, g, f~, and S, which are defined by p~, pi, qr, qi, k, and 
v (p, q, k, and v are defined in terms of physical parameters k, co, Q, and 
A). In other words, under different physical conditions we obtain different 
types of excitation. In the presence of an impurity such as negative ions in 
the fluid model of a plasma, Tagare and Reddy (1986) have graphically 
shown a hole-like structure for up to a certain percentage of negative ions. 
However, to our knowledge no attempt has been made to establish such a 
hole-like excitation, equation (28), because of the presence of dissipative 
effects such as viscosity. This hole-like structure under certain physical condi- 
tions may also play a dominant role in the confinement of plasma particles. 
Again, another interesting feature to note here is that under another set of 
definite physical conditions, the usual soliton-like structure is possible. 
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